

Acknowledgements

- BWB Consulting for expertise (CL)
- Microdrainage for WinDes® modelling software (CL)
- Coventry City Council for funding (FW)
- Coventry University for funding (FW & CL)

Sustainable Drainage

Legislation/policy

- Implementation?
- SUDS Approving Boards
- SUDS Guidance

The aims of this paper are: Coventry University

- 1. To show how the decision-making process in terms of designing a SUDS management train is scale-related with reference to Coventry City Council, a local government authority in central England
- 2. To illustrate this with the application of a large scale site-specific model which identifies the individual SUDS devices suitable for the area using geographical information
- 3. To model at the smaller scale to achieve greenfield runoff.

SUDS device groupings

Coventry
University

Green Roof

Rainwater harvesting

Permeable paving

Sub-surface storage

Trees

Rain garden

Disconnected downpipe

Soakaway

Infiltration basin

Infiltration trench

Detention basin

Retention basin

Pond

Wetland

Sand filter

Filter strip

Filter trench

Bioretention device

Swale

Rill

Site specific physical and anthropogenic factors driving SUDS design

	Source	Infiltration	Detention	Filtration	Conveyance
	Control				
Implementation guidelines	First priority	Infiltrate where detention is not		These should be used wherever possible	
		possible, detain where infiltration is			
Factors		not possible			
Physical					
Bedrock and surface		X	X		
geology					
Water bodies	X	X	X	X	X
Fluvial flood zones		X		X	
Soil drainage type		X	X		
Topography		X	X		
Water Table		X	X		
Anthropogenic					
Waste and landfill sites		X			
Current and former		X			
industrial sites					
Surface and ground water		X	X		
quality					
Land cover	X	X	X	X	X
Planning constraints	X				X

Land ownership, sewer and historical flood locations will also be involved later in the process

Cascade of decision-making determin

Coventry, West Midlands, Infiltration SUDS

Coventry University

Application: decision support

Water & Resilience

SUDS management train designed for Coventry Prior Deram Park, CRZ, Coventry

Comparison of SUDS feasibility map proposals for CRZ at PDP Coventry University

Device	Detailed assessment for	Broad-scale feasibility map options for CRZ			
grouping	Prior Deram Park				
Options in bold	show agreement between the	Proposals that could be considered for this site.			
two methods acr	ross different scales				
Source Control	Permeable paving; green	Green roof; rainwater harvesting; permeable			
	roofs; sub-surface storage;	paving; sub-surface storage; trees; rain garden;			
	trees	disconnected downpipe; soakaway; infiltration			
		trench; bioretention device			
Infiltration	none	none			
Detention &	Detention ponds ,	Engineered: detention basin; retention basin;			
retention	Hydrobrake	pond; sub-surface storage; rainwater harvesting;			
		bioretention device; swale			
Conveyance	Swales	Swale, rill			
Filtration	Sand filter	Sand filter; filter strip; filter trench; bioretention			
		device; detention basin; retention basin; pond;			
Centre for		swale; permeable paving			
Agroecol	ogy.				
Water & Resilience					

Application: decision supportiniversity

Hydrograph of SUDS design and pipesbased Coventry University

Conclusions

- 1. Large-scale information can be useful early in the decision-making process, but may require more testing for detailed planning.
- 2. The information required is site-specific
- 3. The maps are readily understandable, supporting initial discussions at Local Authority level
- 4. They may contribute to breaking down barriers currently limiting the uptake of sustainable forms of stormwater management
- 5. At the smaller scale, it is possible to model suggested SUDS designs based on guidance from the coarser resolution maps
- 6. The pipe-based drainage at PDP would have resulted in 20% of the housing being flooded in a 1 in 100 storm, whereas the SUDS design would have resulted in no flooding.
- 7. SUDS can provide benefits other than storm attenuation, such as water quality improvements, amenity provision and enhancement of biodiversity

